MakeItFrom.com
Menu (ESC)

C14520 Copper vs. EN 1.7380 Steel

C14520 copper belongs to the copper alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.0 to 9.6
19 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 170 to 190
330 to 350
Tensile Strength: Ultimate (UTS), MPa 290 to 330
540 to 550
Tensile Strength: Yield (Proof), MPa 230 to 250
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1050
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 85
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
230 to 280
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.0 to 10
19 to 20
Strength to Weight: Bending, points 11 to 12
19
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 10 to 12
15 to 16

Alloy Composition

Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 99.2 to 99.596
0 to 0.3
Iron (Fe), % 0
94.6 to 96.6
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0.0040 to 0.020
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0.4 to 0.7
0