MakeItFrom.com
Menu (ESC)

C14520 Copper vs. CC751S Brass

Both C14520 copper and CC751S brass are copper alloys. They have 64% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is CC751S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.0 to 9.6
5.6
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 290 to 330
450
Tensile Strength: Yield (Proof), MPa 230 to 250
320

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
850
Melting Onset (Solidus), °C 1050
810
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
110
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
25
Electrical Conductivity: Equal Weight (Specific), % IACS 85
28

Otherwise Unclassified Properties

Base Metal Price, % relative 33
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
23
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
480
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.0 to 10
15
Strength to Weight: Bending, points 11 to 12
16
Thermal Diffusivity, mm2/s 94
35
Thermal Shock Resistance, points 10 to 12
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.2 to 99.596
62.7 to 66
Iron (Fe), % 0
0.25 to 0.5
Lead (Pb), % 0
0.8 to 2.2
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0.0040 to 0.020
0
Silicon (Si), % 0
0.65 to 1.1
Tellurium (Te), % 0.4 to 0.7
0
Tin (Sn), % 0
0 to 0.8
Zinc (Zn), % 0
27.9 to 35.6