MakeItFrom.com
Menu (ESC)

C14520 Copper vs. CC761S Brass

Both C14520 copper and CC761S brass are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.0 to 9.6
8.7
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 290 to 330
540
Tensile Strength: Yield (Proof), MPa 230 to 250
340

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
960
Melting Onset (Solidus), °C 1050
910
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 320
27
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
40
Electrical Conductivity: Equal Weight (Specific), % IACS 85
43

Otherwise Unclassified Properties

Base Metal Price, % relative 33
27
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
41
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
530
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.0 to 10
18
Strength to Weight: Bending, points 11 to 12
18
Thermal Diffusivity, mm2/s 94
8.0
Thermal Shock Resistance, points 10 to 12
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Copper (Cu), % 99.2 to 99.596
78 to 83
Iron (Fe), % 0
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.0040 to 0.020
0 to 0.030
Silicon (Si), % 0
3.0 to 5.0
Tellurium (Te), % 0.4 to 0.7
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
8.9 to 19