MakeItFrom.com
Menu (ESC)

C14700 Copper vs. EN 1.4615 Stainless Steel

C14700 copper belongs to the copper alloys classification, while EN 1.4615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14700 copper and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.1 to 35
50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 160 to 190
360
Tensile Strength: Ultimate (UTS), MPa 240 to 320
500
Tensile Strength: Yield (Proof), MPa 85 to 250
200

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
840
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1070
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 370
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 65
200
Resilience: Unit (Modulus of Resilience), kJ/m3 31 to 280
99
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.3 to 10
18
Strength to Weight: Bending, points 9.5 to 12
18
Thermal Diffusivity, mm2/s 110
4.1
Thermal Shock Resistance, points 8.4 to 12
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 99.395 to 99.798
2.0 to 4.0
Iron (Fe), % 0
63.1 to 72.5
Manganese (Mn), % 0
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
4.5 to 6.0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0.0020 to 0.0050
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0.2 to 0.5
0 to 0.010
Residuals, % 0 to 0.1
0