MakeItFrom.com
Menu (ESC)

C15000 Copper vs. AISI 430FSe Stainless Steel

C15000 copper belongs to the copper alloys classification, while AISI 430FSe stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C15000 copper and the bottom bar is AISI 430FSe stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 13 to 54
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 150 to 280
340
Tensile Strength: Ultimate (UTS), MPa 200 to 460
540
Tensile Strength: Yield (Proof), MPa 45 to 460
310

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 980
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 370
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 93
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 93
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.5
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 43
30
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 250
110
Resilience: Unit (Modulus of Resilience), kJ/m3 8.7 to 910
250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.2 to 14
20
Strength to Weight: Bending, points 8.5 to 15
19
Thermal Diffusivity, mm2/s 110
6.8
Thermal Shock Resistance, points 7.3 to 17
19

Alloy Composition

Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.8 to 99.9
0
Iron (Fe), % 0
79.5 to 84
Manganese (Mn), % 0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.060
Zirconium (Zr), % 0.1 to 0.2
0