MakeItFrom.com
Menu (ESC)

C15000 Copper vs. SAE-AISI 1536 Steel

C15000 copper belongs to the copper alloys classification, while SAE-AISI 1536 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15000 copper and the bottom bar is SAE-AISI 1536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13 to 54
14 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 150 to 280
400 to 440
Tensile Strength: Ultimate (UTS), MPa 200 to 460
640 to 720
Tensile Strength: Yield (Proof), MPa 45 to 460
360 to 600

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 980
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 370
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 93
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 93
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 250
93 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 8.7 to 910
340 to 950
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.2 to 14
23 to 25
Strength to Weight: Bending, points 8.5 to 15
21 to 23
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 7.3 to 17
20 to 23

Alloy Composition

Carbon (C), % 0
0.3 to 0.37
Copper (Cu), % 99.8 to 99.9
0
Iron (Fe), % 0
98 to 98.5
Manganese (Mn), % 0
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Zirconium (Zr), % 0.1 to 0.2
0