MakeItFrom.com
Menu (ESC)

C15000 Copper vs. C92700 Bronze

Both C15000 copper and C92700 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C15000 copper and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 13 to 54
9.1
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 200 to 460
290
Tensile Strength: Yield (Proof), MPa 45 to 460
150

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 980
840
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 370
47
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 93
11
Electrical Conductivity: Equal Weight (Specific), % IACS 93
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 43
58
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 250
22
Resilience: Unit (Modulus of Resilience), kJ/m3 8.7 to 910
110
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.2 to 14
9.1
Strength to Weight: Bending, points 8.5 to 15
11
Thermal Diffusivity, mm2/s 110
15
Thermal Shock Resistance, points 7.3 to 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.8 to 99.9
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.7
Zirconium (Zr), % 0.1 to 0.2
0
Residuals, % 0
0 to 0.7