MakeItFrom.com
Menu (ESC)

C15100 Copper vs. CC331G Bronze

Both C15100 copper and CC331G bronze are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 36
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 260 to 470
620
Tensile Strength: Yield (Proof), MPa 69 to 460
240

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1100
1060
Melting Onset (Solidus), °C 1030
1000
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 360
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
13
Electrical Conductivity: Equal Weight (Specific), % IACS 95
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 43
53
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
97
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
250
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 15
21
Strength to Weight: Bending, points 10 to 15
19
Thermal Diffusivity, mm2/s 100
17
Thermal Shock Resistance, points 9.3 to 17
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 10.5
Copper (Cu), % 99.8 to 99.95
83 to 86.5
Iron (Fe), % 0
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0