MakeItFrom.com
Menu (ESC)

C15100 Copper vs. CC380H Copper-nickel

Both C15100 copper and CC380H copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
26
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
47
Tensile Strength: Ultimate (UTS), MPa 260 to 470
310
Tensile Strength: Yield (Proof), MPa 69 to 460
120

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1100
1130
Melting Onset (Solidus), °C 1030
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
46
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
11
Electrical Conductivity: Equal Weight (Specific), % IACS 95
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 43
58
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
65
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
59
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 15
9.8
Strength to Weight: Bending, points 10 to 15
12
Thermal Diffusivity, mm2/s 100
13
Thermal Shock Resistance, points 9.3 to 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 99.8 to 99.95
84.5 to 89
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0