MakeItFrom.com
Menu (ESC)

C15100 Copper vs. CC494K Bronze

Both C15100 copper and CC494K bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 2.0 to 36
7.6
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 260 to 470
210
Tensile Strength: Yield (Proof), MPa 69 to 460
94

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1100
970
Melting Onset (Solidus), °C 1030
890
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 360
63
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
16
Electrical Conductivity: Equal Weight (Specific), % IACS 95
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
9.1
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 43
50
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
13
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
43
Stiffness to Weight: Axial, points 7.2
6.4
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 8.1 to 15
6.5
Strength to Weight: Bending, points 10 to 15
8.8
Thermal Diffusivity, mm2/s 100
19
Thermal Shock Resistance, points 9.3 to 17
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 99.8 to 99.95
78 to 87
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
8.0 to 10
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0