MakeItFrom.com
Menu (ESC)

C15100 Copper vs. Grade CX2M Nickel

C15100 copper belongs to the copper alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 2.0 to 36
45
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
84
Tensile Strength: Ultimate (UTS), MPa 260 to 470
550
Tensile Strength: Yield (Proof), MPa 69 to 460
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1100
1500
Melting Onset (Solidus), °C 1030
1450
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 360
10
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
65
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 43
160
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
210
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
220
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.1 to 15
18
Strength to Weight: Bending, points 10 to 15
17
Thermal Diffusivity, mm2/s 100
2.7
Thermal Shock Resistance, points 9.3 to 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 99.8 to 99.95
0
Iron (Fe), % 0
0 to 1.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0