MakeItFrom.com
Menu (ESC)

C15100 Copper vs. Grade M30C Nickel

C15100 copper belongs to the copper alloys classification, while grade M30C nickel belongs to the nickel alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
160
Elongation at Break, % 2.0 to 36
29
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
61
Tensile Strength: Ultimate (UTS), MPa 260 to 470
510
Tensile Strength: Yield (Proof), MPa 69 to 460
250

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1100
1290
Melting Onset (Solidus), °C 1030
1240
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 360
22
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
9.5
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
120
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
200
Stiffness to Weight: Axial, points 7.2
10
Stiffness to Weight: Bending, points 18
21
Strength to Weight: Axial, points 8.1 to 15
16
Strength to Weight: Bending, points 10 to 15
16
Thermal Diffusivity, mm2/s 100
5.7
Thermal Shock Resistance, points 9.3 to 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 99.8 to 99.95
26 to 33
Iron (Fe), % 0
0 to 3.5
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0