MakeItFrom.com
Menu (ESC)

C15100 Copper vs. Nickel 685

C15100 copper belongs to the copper alloys classification, while nickel 685 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 36
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 270
770
Tensile Strength: Ultimate (UTS), MPa 260 to 470
1250
Tensile Strength: Yield (Proof), MPa 69 to 460
850

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1100
1380
Melting Onset (Solidus), °C 1030
1330
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 360
13
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
75
Density, g/cm3 9.0
8.4
Embodied Carbon, kg CO2/kg material 2.7
10
Embodied Energy, MJ/kg 43
140
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
190
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
1820
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.1 to 15
42
Strength to Weight: Bending, points 10 to 15
31
Thermal Diffusivity, mm2/s 100
3.3
Thermal Shock Resistance, points 9.3 to 17
37

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 99.8 to 99.95
0 to 0.5
Iron (Fe), % 0
0 to 2.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
2.8 to 3.3
Zinc (Zn), % 0
0.020 to 0.12
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0