MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C14520 Copper

Both C15100 copper and C14520 copper are copper alloys. Their average alloy composition is basically identical. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
9.0 to 9.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 170 to 270
170 to 190
Tensile Strength: Ultimate (UTS), MPa 260 to 470
290 to 330
Tensile Strength: Yield (Proof), MPa 69 to 460
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1030
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
85
Electrical Conductivity: Equal Weight (Specific), % IACS 95
85

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
240 to 280
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1 to 15
9.0 to 10
Strength to Weight: Bending, points 10 to 15
11 to 12
Thermal Diffusivity, mm2/s 100
94
Thermal Shock Resistance, points 9.3 to 17
10 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.8 to 99.95
99.2 to 99.596
Phosphorus (P), % 0
0.0040 to 0.020
Tellurium (Te), % 0
0.4 to 0.7
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0

Comparable Variants