MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C17465 Copper

Both C15100 copper and C17465 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
5.3 to 36
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 30 to 64
44 to 110
Shear Modulus, GPa 43
44
Shear Strength, MPa 170 to 270
210 to 540
Tensile Strength: Ultimate (UTS), MPa 260 to 470
310 to 930
Tensile Strength: Yield (Proof), MPa 69 to 460
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1030
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
220
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 95
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 31
45
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 43
64
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
64 to 2920
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1 to 15
9.7 to 29
Strength to Weight: Bending, points 10 to 15
11 to 24
Thermal Diffusivity, mm2/s 100
64
Thermal Shock Resistance, points 9.3 to 17
11 to 33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Copper (Cu), % 99.8 to 99.95
95.7 to 98.7
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Nickel (Ni), % 0
1.0 to 1.4
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0.050 to 0.15
0 to 0.5
Residuals, % 0 to 0.1
0 to 0.5