MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C50100 Bronze

Both C15100 copper and C50100 bronze are copper alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
40
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 48 to 65
35
Shear Modulus, GPa 43
43
Shear Strength, MPa 170 to 270
180
Tensile Strength: Ultimate (UTS), MPa 260 to 470
270
Tensile Strength: Yield (Proof), MPa 69 to 460
82

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1080
Melting Onset (Solidus), °C 1030
1070
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 360
230
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
55
Electrical Conductivity: Equal Weight (Specific), % IACS 95
55

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
82
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
29
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1 to 15
8.3
Strength to Weight: Bending, points 10 to 15
10
Thermal Diffusivity, mm2/s 100
66
Thermal Shock Resistance, points 9.3 to 17
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.8 to 99.95
98.6 to 99.49
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.010 to 0.050
Tin (Sn), % 0
0.5 to 0.8
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.5