MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C81500 Copper

Both C15100 copper and C81500 copper are copper alloys. They have a very high 99% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.0 to 36
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 260 to 470
350
Tensile Strength: Yield (Proof), MPa 69 to 460
280

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1090
Melting Onset (Solidus), °C 1030
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
320
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
82
Electrical Conductivity: Equal Weight (Specific), % IACS 95
83

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
56
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
330
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.1 to 15
11
Strength to Weight: Bending, points 10 to 15
12
Thermal Diffusivity, mm2/s 100
91
Thermal Shock Resistance, points 9.3 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 99.8 to 99.95
97.4 to 99.6
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.5