MakeItFrom.com
Menu (ESC)

C15100 Copper vs. C83400 Brass

Both C15100 copper and C83400 brass are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15100 copper and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 36
30
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 260 to 470
240
Tensile Strength: Yield (Proof), MPa 69 to 460
69

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1100
1040
Melting Onset (Solidus), °C 1030
1020
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 360
190
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
44
Electrical Conductivity: Equal Weight (Specific), % IACS 95
46

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 43
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.3 to 71
55
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 890
21
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.1 to 15
7.7
Strength to Weight: Bending, points 10 to 15
9.9
Thermal Diffusivity, mm2/s 100
57
Thermal Shock Resistance, points 9.3 to 17
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.8 to 99.95
88 to 92
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
8.0 to 12
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.7