MakeItFrom.com
Menu (ESC)

C15500 Copper vs. 7020 Aluminum

C15500 copper belongs to the copper alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C15500 copper and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 3.0 to 37
8.4 to 14
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 190 to 320
110 to 230
Tensile Strength: Ultimate (UTS), MPa 280 to 550
190 to 390
Tensile Strength: Yield (Proof), MPa 130 to 530
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1080
610
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 350
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
39
Electrical Conductivity: Equal Weight (Specific), % IACS 91
120

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 360
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
110 to 690
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
47
Strength to Weight: Axial, points 8.6 to 17
18 to 37
Strength to Weight: Bending, points 11 to 17
25 to 41
Thermal Diffusivity, mm2/s 100
59
Thermal Shock Resistance, points 9.8 to 20
8.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
91.2 to 94.8
Chromium (Cr), % 0
0.1 to 0.35
Copper (Cu), % 99.75 to 99.853
0 to 0.2
Iron (Fe), % 0
0 to 0.4
Magnesium (Mg), % 0.080 to 0.13
1.0 to 1.4
Manganese (Mn), % 0
0.050 to 0.5
Phosphorus (P), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.35
Silver (Ag), % 0.027 to 0.1
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0 to 0.2
0 to 0.15