MakeItFrom.com
Menu (ESC)

C15500 Copper vs. CC330G Bronze

Both C15500 copper and CC330G bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.0 to 37
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 280 to 550
530
Tensile Strength: Yield (Proof), MPa 130 to 530
190

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1080
1000
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 350
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
14
Electrical Conductivity: Equal Weight (Specific), % IACS 91
15

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 42
52
Embodied Water, L/kg 360
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
82
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
170
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.6 to 17
18
Strength to Weight: Bending, points 11 to 17
17
Thermal Diffusivity, mm2/s 100
17
Thermal Shock Resistance, points 9.8 to 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.0 to 10.5
Copper (Cu), % 99.75 to 99.853
87 to 92
Iron (Fe), % 0
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Silver (Ag), % 0.027 to 0.1
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.2
0