MakeItFrom.com
Menu (ESC)

C15500 Copper vs. C90400 Bronze

Both C15500 copper and C90400 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C15500 copper and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.0 to 37
24
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 280 to 550
310
Tensile Strength: Yield (Proof), MPa 130 to 530
180

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
990
Melting Onset (Solidus), °C 1080
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 350
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
12
Electrical Conductivity: Equal Weight (Specific), % IACS 91
12

Otherwise Unclassified Properties

Base Metal Price, % relative 33
34
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 42
56
Embodied Water, L/kg 360
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 84
65
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 1210
150
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.6 to 17
10
Strength to Weight: Bending, points 11 to 17
12
Thermal Diffusivity, mm2/s 100
23
Thermal Shock Resistance, points 9.8 to 20
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 99.75 to 99.853
86 to 89
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.080 to 0.13
0
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.040 to 0.080
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0.027 to 0.1
0
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.7