MakeItFrom.com
Menu (ESC)

C15900 Copper vs. EN 1.4542 Stainless Steel

C15900 copper belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.5
5.7 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 420
550 to 860
Tensile Strength: Ultimate (UTS), MPa 720
880 to 1470
Tensile Strength: Yield (Proof), MPa 240
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 49
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
880 to 4360
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
31 to 52
Strength to Weight: Bending, points 20
26 to 37
Thermal Diffusivity, mm2/s 80
4.3
Thermal Shock Resistance, points 26
29 to 49

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 97.5 to 97.9
3.0 to 5.0
Iron (Fe), % 0 to 0.040
69.6 to 79
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.66 to 0.74
0