MakeItFrom.com
Menu (ESC)

C15900 Copper vs. EN 1.6580 Steel

C15900 copper belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.5
11 to 19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 420
450 to 700
Tensile Strength: Ultimate (UTS), MPa 720
720 to 1170
Tensile Strength: Yield (Proof), MPa 240
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
450
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 280
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 49
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
4.3
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
560 to 2590
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 23
26 to 41
Strength to Weight: Bending, points 20
23 to 31
Thermal Diffusivity, mm2/s 80
11
Thermal Shock Resistance, points 26
21 to 34

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
93.7 to 95.5
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0.66 to 0.74
0