MakeItFrom.com
Menu (ESC)

C15900 Copper vs. C53800 Bronze

Both C15900 copper and C53800 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.5
2.3
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Shear Strength, MPa 420
470
Tensile Strength: Ultimate (UTS), MPa 720
830
Tensile Strength: Yield (Proof), MPa 240
660

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 1030
800
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 280
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 49
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
37
Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 45
64
Embodied Water, L/kg 310
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
18
Resilience: Unit (Modulus of Resilience), kJ/m3 260
2020
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 23
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 80
19
Thermal Shock Resistance, points 26
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0
Copper (Cu), % 97.5 to 97.9
85.1 to 86.5
Iron (Fe), % 0 to 0.040
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0.4 to 0.54
0
Tin (Sn), % 0
13.1 to 13.9
Titanium (Ti), % 0.66 to 0.74
0
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2