MakeItFrom.com
Menu (ESC)

C15900 Copper vs. C72150 Copper-nickel

Both C15900 copper and C72150 copper-nickel are copper alloys. They have 55% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
150
Elongation at Break, % 6.5
29
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
55
Shear Strength, MPa 420
320
Tensile Strength: Ultimate (UTS), MPa 720
490
Tensile Strength: Yield (Proof), MPa 240
210

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1080
1210
Melting Onset (Solidus), °C 1030
1250
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 280
22
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 49
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
45
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 2.8
6.1
Embodied Energy, MJ/kg 45
88
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
150
Stiffness to Weight: Axial, points 7.2
9.1
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 80
6.0
Thermal Shock Resistance, points 26
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.1
Copper (Cu), % 97.5 to 97.9
52.5 to 57
Iron (Fe), % 0 to 0.040
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
43 to 46
Oxygen (O), % 0.4 to 0.54
0
Silicon (Si), % 0
0 to 0.5
Titanium (Ti), % 0.66 to 0.74
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5