MakeItFrom.com
Menu (ESC)

C15900 Copper vs. S20433 Stainless Steel

C15900 copper belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.5
46
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 95
82
Shear Modulus, GPa 43
76
Shear Strength, MPa 420
440
Tensile Strength: Ultimate (UTS), MPa 720
630
Tensile Strength: Yield (Proof), MPa 240
270

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 49
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
230
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 80
4.0
Thermal Shock Resistance, points 26
14

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 97.5 to 97.9
1.5 to 3.5
Iron (Fe), % 0 to 0.040
64.1 to 72.4
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.66 to 0.74
0