MakeItFrom.com
Menu (ESC)

C16200 Copper vs. EN 1.4567 Stainless Steel

C16200 copper belongs to the copper alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 56
22 to 51
Fatigue Strength, MPa 100 to 210
190 to 260
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 190 to 390
390 to 490
Tensile Strength: Ultimate (UTS), MPa 240 to 550
550 to 780
Tensile Strength: Yield (Proof), MPa 48 to 470
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 370
930
Melting Completion (Liquidus), °C 1080
1410
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 360
11
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
100 to 400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 17
19 to 27
Strength to Weight: Bending, points 9.6 to 17
19 to 24
Thermal Diffusivity, mm2/s 100
3.0
Thermal Shock Resistance, points 8.7 to 20
12 to 17

Alloy Composition

Cadmium (Cd), % 0.7 to 1.2
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 98.6 to 99.3
3.0 to 4.0
Iron (Fe), % 0 to 0.2
63.3 to 71.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015