MakeItFrom.com
Menu (ESC)

C16200 Copper vs. EN 1.6220 Steel

C16200 copper belongs to the copper alloys classification, while EN 1.6220 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 56
23 to 25
Fatigue Strength, MPa 100 to 210
240 to 250
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 240 to 550
550 to 580
Tensile Strength: Yield (Proof), MPa 48 to 470
340

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 370
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 360
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.1
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
300 to 310
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.4 to 17
19 to 20
Strength to Weight: Bending, points 9.6 to 17
19 to 20
Thermal Diffusivity, mm2/s 100
14
Thermal Shock Resistance, points 8.7 to 20
16 to 17

Alloy Composition

Cadmium (Cd), % 0.7 to 1.2
0
Carbon (C), % 0
0.17 to 0.23
Copper (Cu), % 98.6 to 99.3
0
Iron (Fe), % 0 to 0.2
96.7 to 98.8
Manganese (Mn), % 0
1.0 to 1.6
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030