MakeItFrom.com
Menu (ESC)

C16200 Copper vs. S32760 Stainless Steel

C16200 copper belongs to the copper alloys classification, while S32760 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 56
28
Fatigue Strength, MPa 100 to 210
450
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Shear Strength, MPa 190 to 390
550
Tensile Strength: Ultimate (UTS), MPa 240 to 550
850
Tensile Strength: Yield (Proof), MPa 48 to 470
620

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 370
1100
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 360
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
22
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 41
57
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
220
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
930
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 17
30
Strength to Weight: Bending, points 9.6 to 17
25
Thermal Diffusivity, mm2/s 100
4.0
Thermal Shock Resistance, points 8.7 to 20
23

Alloy Composition

Cadmium (Cd), % 0.7 to 1.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 98.6 to 99.3
0.5 to 1.0
Iron (Fe), % 0 to 0.2
57.6 to 65.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
0.5 to 1.0