MakeItFrom.com
Menu (ESC)

C16500 Copper vs. 224.0 Aluminum

C16500 copper belongs to the copper alloys classification, while 224.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C16500 copper and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 1.5 to 53
4.0 to 10
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Tensile Strength: Ultimate (UTS), MPa 280 to 530
380 to 420
Tensile Strength: Yield (Proof), MPa 97 to 520
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1070
650
Melting Onset (Solidus), °C 1010
550
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 250
120
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
32
Electrical Conductivity: Equal Weight (Specific), % IACS 61
95

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 320
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
540 to 770
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 8.6 to 17
35 to 38
Strength to Weight: Bending, points 11 to 16
38 to 41
Thermal Diffusivity, mm2/s 74
47
Thermal Shock Resistance, points 9.8 to 19
17 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
93 to 95.2
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
4.5 to 5.5
Iron (Fe), % 0 to 0.020
0 to 0.1
Manganese (Mn), % 0
0.2 to 0.5
Silicon (Si), % 0
0 to 0.060
Tin (Sn), % 0.5 to 0.7
0
Titanium (Ti), % 0
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0 to 0.5
0 to 0.1