MakeItFrom.com
Menu (ESC)

C16500 Copper vs. ASTM A369 Grade FP21

C16500 copper belongs to the copper alloys classification, while ASTM A369 grade FP21 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is ASTM A369 grade FP21.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.5 to 53
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 200 to 310
300
Tensile Strength: Ultimate (UTS), MPa 280 to 530
470
Tensile Strength: Yield (Proof), MPa 97 to 520
240

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 340
470
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 250
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 320
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
80
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
150
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.6 to 17
17
Strength to Weight: Bending, points 11 to 16
17
Thermal Diffusivity, mm2/s 74
11
Thermal Shock Resistance, points 9.8 to 19
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.7 to 3.4
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
94.3 to 96.2
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 0.7
0
Residuals, % 0 to 0.5
0