MakeItFrom.com
Menu (ESC)

C16500 Copper vs. EN 1.4347 Stainless Steel

C16500 copper belongs to the copper alloys classification, while EN 1.4347 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is EN 1.4347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.5 to 53
23
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Tensile Strength: Ultimate (UTS), MPa 280 to 530
660
Tensile Strength: Yield (Proof), MPa 97 to 520
480

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1070
1410
Melting Onset (Solidus), °C 1010
1370
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
16
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
570
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
24
Strength to Weight: Bending, points 11 to 16
22
Thermal Diffusivity, mm2/s 74
4.0
Thermal Shock Resistance, points 9.8 to 19
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
62.2 to 69.4
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 0.7
0
Residuals, % 0 to 0.5
0