MakeItFrom.com
Menu (ESC)

C16500 Copper vs. EN 2.4608 Nickel

C16500 copper belongs to the copper alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 1.5 to 53
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
81
Shear Strength, MPa 200 to 310
410
Tensile Strength: Ultimate (UTS), MPa 280 to 530
620
Tensile Strength: Yield (Proof), MPa 97 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 340
1000
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 250
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 61
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.4
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
180
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.6 to 17
20
Strength to Weight: Bending, points 11 to 16
19
Thermal Diffusivity, mm2/s 74
2.9
Thermal Shock Resistance, points 9.8 to 19
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
11.4 to 23.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.7
0
Tungsten (W), % 0
2.5 to 4.0
Residuals, % 0 to 0.5
0