MakeItFrom.com
Menu (ESC)

C16500 Copper vs. SAE-AISI 9254 Steel

C16500 copper belongs to the copper alloys classification, while SAE-AISI 9254 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.5 to 53
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
72
Shear Strength, MPa 200 to 310
410
Tensile Strength: Ultimate (UTS), MPa 280 to 530
660
Tensile Strength: Yield (Proof), MPa 97 to 520
410

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 340
410
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 250
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.2
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 42
20
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
450
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
24
Strength to Weight: Bending, points 11 to 16
22
Thermal Diffusivity, mm2/s 74
12
Thermal Shock Resistance, points 9.8 to 19
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0
0.6 to 0.8
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
96.1 to 97.1
Manganese (Mn), % 0
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.2 to 1.6
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.5 to 0.7
0
Residuals, % 0 to 0.5
0