MakeItFrom.com
Menu (ESC)

C16500 Copper vs. C19800 Copper

Both C16500 copper and C19800 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 1.5 to 53
9.0 to 12
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 200 to 310
260 to 330
Tensile Strength: Ultimate (UTS), MPa 280 to 530
430 to 550
Tensile Strength: Yield (Proof), MPa 97 to 520
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 340
200
Melting Completion (Liquidus), °C 1070
1070
Melting Onset (Solidus), °C 1010
1050
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 250
260
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
61
Electrical Conductivity: Equal Weight (Specific), % IACS 61
62

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
770 to 1320
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.6 to 17
14 to 17
Strength to Weight: Bending, points 11 to 16
14 to 17
Thermal Diffusivity, mm2/s 74
75
Thermal Shock Resistance, points 9.8 to 19
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
95.7 to 99.47
Iron (Fe), % 0 to 0.020
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Phosphorus (P), % 0
0.010 to 0.1
Tin (Sn), % 0.5 to 0.7
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0 to 0.5
0 to 0.2

Comparable Variants