MakeItFrom.com
Menu (ESC)

C16500 Copper vs. C65100 Bronze

Both C16500 copper and C65100 bronze are copper alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 1.5 to 53
2.4 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 200 to 310
200 to 350
Tensile Strength: Ultimate (UTS), MPa 280 to 530
280 to 560
Tensile Strength: Yield (Proof), MPa 97 to 520
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 340
200
Melting Completion (Liquidus), °C 1070
1060
Melting Onset (Solidus), °C 1010
1030
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 250
57
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
12
Electrical Conductivity: Equal Weight (Specific), % IACS 61
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
39 to 820
Stiffness to Weight: Axial, points 7.1
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.6 to 17
8.7 to 18
Strength to Weight: Bending, points 11 to 16
11 to 17
Thermal Diffusivity, mm2/s 74
16
Thermal Shock Resistance, points 9.8 to 19
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
94.5 to 99.2
Iron (Fe), % 0 to 0.020
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Silicon (Si), % 0
0.8 to 2.0
Tin (Sn), % 0.5 to 0.7
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants