MakeItFrom.com
Menu (ESC)

C17000 Copper vs. ASTM A387 Grade 91 Class 2

C17000 copper belongs to the copper alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.1 to 31
20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
75
Shear Strength, MPa 320 to 750
420
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
670
Tensile Strength: Yield (Proof), MPa 160 to 1140
470

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 270
600
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 22
10

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 310
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
580
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 41
24
Strength to Weight: Bending, points 16 to 30
22
Thermal Diffusivity, mm2/s 32
6.9
Thermal Shock Resistance, points 17 to 45
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.020
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 96.3 to 98.2
0
Iron (Fe), % 0 to 0.4
87.3 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0.2 to 0.6
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0