MakeItFrom.com
Menu (ESC)

C17000 Copper vs. EN 1.0348 Steel

C17000 copper belongs to the copper alloys classification, while EN 1.0348 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.1 to 31
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 320 to 750
250
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
380
Tensile Strength: Yield (Proof), MPa 160 to 1140
220

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 22
8.2

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
91
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
130
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 41
13
Strength to Weight: Bending, points 16 to 30
15
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 17 to 45
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0.020 to 0.2
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 96.3 to 98.2
0 to 0.3
Iron (Fe), % 0 to 0.4
97.5 to 99.98
Manganese (Mn), % 0
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0.2 to 0.6
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Residuals, % 0 to 0.5
0