MakeItFrom.com
Menu (ESC)

C17000 Copper vs. C28000 Muntz Metal

Both C17000 copper and C28000 Muntz Metal are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.1 to 31
10 to 45
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
40
Shear Strength, MPa 320 to 750
230 to 330
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
330 to 610
Tensile Strength: Yield (Proof), MPa 160 to 1140
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 270
120
Melting Completion (Liquidus), °C 980
900
Melting Onset (Solidus), °C 870
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
28
Electrical Conductivity: Equal Weight (Specific), % IACS 22
31

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
110 to 670
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 15 to 41
11 to 21
Strength to Weight: Bending, points 16 to 30
13 to 20
Thermal Diffusivity, mm2/s 32
40
Thermal Shock Resistance, points 17 to 45
11 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
59 to 63
Iron (Fe), % 0 to 0.4
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Nickel (Ni), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.2
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0 to 0.5
0 to 0.3