MakeItFrom.com
Menu (ESC)

C17000 Copper vs. C48500 Brass

Both C17000 copper and C48500 brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.1 to 31
13 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
39
Shear Strength, MPa 320 to 750
250 to 300
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
400 to 500
Tensile Strength: Yield (Proof), MPa 160 to 1140
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 270
120
Melting Completion (Liquidus), °C 980
900
Melting Onset (Solidus), °C 870
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
26
Electrical Conductivity: Equal Weight (Specific), % IACS 22
29

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
120 to 500
Stiffness to Weight: Axial, points 7.6
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15 to 41
14 to 17
Strength to Weight: Bending, points 16 to 30
15 to 17
Thermal Diffusivity, mm2/s 32
38
Thermal Shock Resistance, points 17 to 45
13 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
59 to 62
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Nickel (Ni), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0 to 0.5
0 to 0.4