MakeItFrom.com
Menu (ESC)

C17000 Copper vs. C84500 Brass

Both C17000 copper and C84500 brass are copper alloys. They have 79% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.1 to 31
28
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
39
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
240
Tensile Strength: Yield (Proof), MPa 160 to 1140
97

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 270
150
Melting Completion (Liquidus), °C 980
980
Melting Onset (Solidus), °C 870
840
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 110
72
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
16
Electrical Conductivity: Equal Weight (Specific), % IACS 22
17

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 8.7
2.9
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
54
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
45
Stiffness to Weight: Axial, points 7.6
6.6
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15 to 41
7.7
Strength to Weight: Bending, points 16 to 30
9.8
Thermal Diffusivity, mm2/s 32
23
Thermal Shock Resistance, points 17 to 45
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
77 to 79
Iron (Fe), % 0 to 0.4
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Nickel (Ni), % 0.2 to 0.6
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0 to 0.5
0 to 0.7