MakeItFrom.com
Menu (ESC)

C17200 Copper vs. CC334G Bronze

Both C17200 copper and CC334G bronze are copper alloys. They have 79% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.1 to 37
5.6
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
45
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
810
Tensile Strength: Yield (Proof), MPa 160 to 1250
410

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 280
240
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 870
1020
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 23
8.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 9.4
3.6
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 500
38
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5720
710
Stiffness to Weight: Axial, points 7.6
8.1
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 15 to 44
28
Strength to Weight: Bending, points 16 to 31
24
Thermal Diffusivity, mm2/s 31
11
Thermal Shock Resistance, points 16 to 46
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
10 to 12
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 96.1 to 98
72 to 84.5
Iron (Fe), % 0 to 0.4
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.5
Nickel (Ni), % 0.2 to 0.6
4.0 to 7.5
Silicon (Si), % 0 to 0.2
0 to 0.1
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0