MakeItFrom.com
Menu (ESC)

C17200 Copper vs. Grade CW6MC Nickel

C17200 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 37
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
540
Tensile Strength: Yield (Proof), MPa 160 to 1250
310

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 280
980
Melting Completion (Liquidus), °C 980
1480
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 23
1.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 9.4
14
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 500
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5720
240
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 44
18
Strength to Weight: Bending, points 16 to 31
17
Thermal Diffusivity, mm2/s 31
2.8
Thermal Shock Resistance, points 16 to 46
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 96.1 to 98
0
Iron (Fe), % 0 to 0.4
0 to 5.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0.2 to 0.6
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0