MakeItFrom.com
Menu (ESC)

C17300 Copper vs. ASTM A369 Grade FP91

C17300 copper belongs to the copper alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 23
19
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
75
Shear Strength, MPa 320 to 790
410
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
670
Tensile Strength: Yield (Proof), MPa 160 to 1200
460

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 270
600
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 23
10

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 310
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
560
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 44
24
Strength to Weight: Bending, points 16 to 31
22
Thermal Diffusivity, mm2/s 32
6.9
Thermal Shock Resistance, points 17 to 48
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.020
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 95.5 to 97.8
0
Iron (Fe), % 0 to 0.4
87.3 to 90.3
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0.2 to 0.6
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0