MakeItFrom.com
Menu (ESC)

C17300 Copper vs. S31060 Stainless Steel

C17300 copper belongs to the copper alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 23
46
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 45
78
Shear Strength, MPa 320 to 790
480
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
680
Tensile Strength: Yield (Proof), MPa 160 to 1200
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 270
1080
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 23
2.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
250
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 44
24
Strength to Weight: Bending, points 16 to 31
22
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 17 to 48
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 95.5 to 97.8
0
Iron (Fe), % 0 to 0.4
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.2 to 0.6
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0