MakeItFrom.com
Menu (ESC)

C17300 Copper vs. S31266 Stainless Steel

C17300 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 3.0 to 23
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
81
Shear Strength, MPa 320 to 790
590
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
860
Tensile Strength: Yield (Proof), MPa 160 to 1200
470

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 270
1100
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 23
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 9.4
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
290
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
540
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 44
29
Strength to Weight: Bending, points 16 to 31
24
Thermal Diffusivity, mm2/s 32
3.1
Thermal Shock Resistance, points 17 to 48
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 95.5 to 97.8
1.0 to 2.5
Iron (Fe), % 0 to 0.4
34.1 to 46
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0.2 to 0.6
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Residuals, % 0 to 0.5
0