MakeItFrom.com
Menu (ESC)

C17465 Copper vs. G-CoCr28 Cobalt

C17465 copper belongs to the copper alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 5.3 to 36
6.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
83
Tensile Strength: Ultimate (UTS), MPa 310 to 930
560
Tensile Strength: Yield (Proof), MPa 120 to 830
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 210
1200
Melting Completion (Liquidus), °C 1080
1330
Melting Onset (Solidus), °C 1030
1270
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 220
8.5
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 45
100
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 4.1
6.2
Embodied Energy, MJ/kg 64
84
Embodied Water, L/kg 310
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
31
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
160
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 29
19
Strength to Weight: Bending, points 11 to 24
19
Thermal Diffusivity, mm2/s 64
2.2
Thermal Shock Resistance, points 11 to 33
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.15 to 0.5
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 95.7 to 98.7
0
Iron (Fe), % 0 to 0.2
9.7 to 24.5
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 1.4
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0 to 0.5
0