MakeItFrom.com
Menu (ESC)

C17465 Copper vs. C17300 Copper

Both C17465 copper and C17300 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is C17300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 5.3 to 36
3.0 to 23
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
45
Shear Strength, MPa 210 to 540
320 to 790
Tensile Strength: Ultimate (UTS), MPa 310 to 930
500 to 1380
Tensile Strength: Yield (Proof), MPa 120 to 830
160 to 1200

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 210
270
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 1030
870
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 220
110
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 51
22
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 52
23

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 4.1
9.4
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
40 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
110 to 5410
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 29
16 to 44
Strength to Weight: Bending, points 11 to 24
16 to 31
Thermal Diffusivity, mm2/s 64
32
Thermal Shock Resistance, points 11 to 33
17 to 48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.2
Beryllium (Be), % 0.15 to 0.5
1.8 to 2.0
Copper (Cu), % 95.7 to 98.7
95.5 to 97.8
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0.2 to 0.6
0.2 to 0.6
Nickel (Ni), % 1.0 to 1.4
0.2 to 0.6
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0 to 0.5
0 to 0.5

Comparable Variants