MakeItFrom.com
Menu (ESC)

C17465 Copper vs. C95200 Bronze

Both C17465 copper and C95200 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 5.3 to 36
29
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 310 to 930
520
Tensile Strength: Yield (Proof), MPa 120 to 830
190

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1030
1040
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 220
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 51
11
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 52
12

Otherwise Unclassified Properties

Base Metal Price, % relative 45
28
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 4.1
3.0
Embodied Energy, MJ/kg 64
50
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
120
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
170
Stiffness to Weight: Axial, points 7.3
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 29
17
Strength to Weight: Bending, points 11 to 24
17
Thermal Diffusivity, mm2/s 64
14
Thermal Shock Resistance, points 11 to 33
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
8.5 to 9.5
Beryllium (Be), % 0.15 to 0.5
0
Copper (Cu), % 95.7 to 98.7
86 to 89
Iron (Fe), % 0 to 0.2
2.5 to 4.0
Lead (Pb), % 0.2 to 0.6
0
Nickel (Ni), % 1.0 to 1.4
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0 to 0.5
0 to 1.0