MakeItFrom.com
Menu (ESC)

C17500 Copper vs. ACI-ASTM CH20 Steel

C17500 copper belongs to the copper alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.0 to 30
38
Fatigue Strength, MPa 170 to 310
290
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 310 to 860
610
Tensile Strength: Yield (Proof), MPa 170 to 760
350

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
14
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 60
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.7
3.7
Embodied Energy, MJ/kg 73
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
300
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
22
Strength to Weight: Bending, points 11 to 23
21
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 11 to 29
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
22 to 26
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
54.7 to 66
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0